Sedatif, Analjezik ve Anestezik İlaçların SARSCoV- 2, ACE-2 ve SARS-CoV-2- ACE-2 Kompleksi ile Etkileşimlerinin Moleküler Yerleştirme Yöntemiyle Araştırılması
PDF
Atıf
Paylaş
Talep
P: 8-32
Mart 2021

Sedatif, Analjezik ve Anestezik İlaçların SARSCoV- 2, ACE-2 ve SARS-CoV-2- ACE-2 Kompleksi ile Etkileşimlerinin Moleküler Yerleştirme Yöntemiyle Araştırılması

J Turk Soc Intens Care 2021;19(1):8-32
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 16.06.2020
Kabul Tarihi: 20.01.2021
Yayın Tarihi: 30.12.2021
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Koronavirüs hastalığı-2019 (COVID-19) tedavisi için moleküler docking (kenetlenme) yöntemi ile sedatif, analjezik ve anestezik ilaçların şiddetli akut solunum sendromu koronavirüs 2 (SARS-CoV-2), insan anjiyotensin dönüştürücü enzim-2 (ACE-2) ve SARS-CoV-2- ACE-2 kompleksi üzerindeki inhibitör etkilerinin ve kullanım potansiyelinin araştırılmasıdır.

Gereç ve Yöntem:

Bu çalışmada, COVID-19 tedavisi için klinik testlerde kullanılan ilaçlar (klorokin, hidroksiklorokin ve nelfinavir) ve inhibitör olarak sedasyon, analjezi ve anestezi için en sık kullanılan ilaçlar (desfluran, deksmedetomidin, fentanil, ketamin, midazolam, propofol, remifentanil ve sevofluran) ile üç farklı enzim (6LU7, 1R4L ve 6LZG) arasında moleküler etkileşimi araştırmak için moleküler docking prosedürü uygulanmıştır. Autodock 4.2, Lamarckian Genetik Algoritması, moleküler etkileşim olasılığını analiz etmek için kullanılmıştır. Değerlendirme, Biovia Discovery Studio Visualizer 2020 programı ile yapılmıştır. Moleküler docking sonucunda enzim ile ilaçlar arasında hidrojen-elektrostatik ve van der Waals gibi etkileşim türleri ve şiddetleri tespit edilerek sonuçlar karşılaştırılmıştır.

Bulgular:

Çalışmaya dahil edilen ilaçlar arasında fentanil, SARS-CoV-2, ACE-2 ve SARS-CoV-2- ACE-2 Kompleksi üzerinde çok düşük enerjiyle (-8,75 ile -7,64 kcal/mol) bağlandığı ve bu proteinleri düşük konsantrasyonlarda inhibe etme potansiyeline sahip olduğu görülmüştür. Fentanilden sonra sırasıyla midazolam, ketamin, propofol ve remifentanilin de proteinleri inhibe etme potansiyeline sahip olduğu görülmüştür. Ancak sevofluran ve desfluranın etkisiz olduğu görülmüştür.

Sonuç:

COVID-19 hastalarında uygulanacak sedasyon, analjezi ve anestezi işlemlerinde fentanilin tercih edilebileceğini ve genel anestezi için ise, total intravenöz anestezisinin tercih edilebileceğini düşünüyoruz. Bununla birlikte, bu maddeleri tedavide kullanmak için deneysel ve klinik çalışmalara ihtiyaç vardır.

References

1
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13.
2
Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020;76:71-6.
3
Greenland JR, Michelow MD, Wang L, London MJ. COVID-19 Infection: Implications for Perioperative and Critical Care Physicians. Anesthesiology 2020;132:1346-61.
4
Ammar MA, Sacha GL, Welch SC, Bass SN, Kane-Gill SL, Duggal A, et al. Sedation, Analgesia, and Paralysis in COVID-19 Patients in the Setting of Drug Shortages. J Intensive Care Med 2021;36:157-74.
5
Gommers D, Bakker J. Medications for analgesia and sedation in the intensive care unit: an overview. Crit Care 2008;12 Suppl 3:S4.
6
Barr J, Fraser GL, Puntillo K, Ely EW, Gélinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med 2013;41:263-306.
7
Bein T, Grasso S, Moerer O, Quintel M, Guerin C, Deja M, et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med 2016;42:699-711.
8
Braz HLB, Silveira JAM, Marinho AD, de Moraes MEA, Moraes Filho MO, Monteiro HSA, et al. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Int J Antimicrob Agents 2020;56:106119.
9
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565-74.
10
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chembiochem 2020;21:730-8.
11
Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020;9:221-36.
12
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011;7:146-57.
13
Liu X, Zhang B, Jin Z, Yang H, Rao Z. Crystal structure of COVID-19 main protease in complex with an inhibitor N3. Protein DataBank, 2020.
14
Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 2004;279:17996-8007.
15
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020;181:894-904.e9.
16
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-91.
17
Lii JH, Allinger NL. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals’ potentials and crystal data for aliphatic and aromatic hydrocarbons, J Am Chem Soc 1989;111:8576-82.
18
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol 2016;24:490-502.
19
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181:271-80.e8.
20
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-3.
21
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012;4:1011-33.
22
Kandeel M, Al-Nazawi M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci 2020;251:117627.
23
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci 2020;255:117831.
24
Zhang DH, Wu KL, Zhang X, Deng SQ, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med 2020;18:152-8.
25
Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020;395:1695-704.
26
Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent Sci 2020;6:315-31.
27
Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11:222.
28
Musarrat F, Chouljenko V, Dahal A, Nabi R, Chouljenko T, Jois SD, et al. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J Med Virol 2020;92:2087-95.
29
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269-71.
30
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949.
31
Qaseem A, Yost J, Etxeandia-Ikobaltzeta I, Miller MC, Abraham GM, Obley AJ, et al. Should Clinicians Use Chloroquine or Hydroxychloroquine Alone or in Combination With Azithromycin for the Prophylaxis or Treatment of COVID-19 Ann Intern Med. 2020:M20-3862.
32
Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ 2020;369:m1849.
33
Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med 2018;46:e825-73.
34
Koyuncu İ, Durgun M, Yorulmaz N, Toprak S, Gonel A, Bayraktar N, et al. Molecular docking demonstration of the liquorice chemical molecules on the protease and ACE2 of COVID-19 virus. Current Enzyme Inhibition 2021;7:98-110.
35
Ozturk H, Yorulmaz N, Durgun M, Basoglu H. In silico investigation of Alliin as potential activator for AMPA receptor. Biomed Phys Eng Express 2021;8.
2024 ©️ Galenos Publishing House