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ÖZ Amaç: Solunum yetmezliği, çocuk yoğun bakım ünitesi hastalarında en sık ölüm nedenlerinden 
biridir. Yetişkin ve az sayıda pediatrik çalışmada akut solunum distresi sendromu (ARDS) hastalarında 
sürüş baskısı ile mortaliteyi ilişkilendirmiştir, ancak ARDS'si olmayan hastalarda sürüş basıncı ile 
mortalite arasındaki ilişkiyi gösteren çalışmalar tutarsız ve sınırlıdır. Bu çalışmada solunum yetmezliği 
nedeniyle mekanik ventilasyon desteği alan pediatrik ARDS (pARDS) ve non-pARDS tanılı pediatrik 
hastalarda sürüş basıncının mortalite ile ilişkisinin belirlenmesi amaçlandı.
Gereç ve Yöntem: Öngörülen ventilasyon süresi 24 saatten fazla mekanik ventilasyon uygulanan 
hastalar kaydedildi. pARDS ve non-PARDS gruplarındaki hastaların sürüş basıncı ve diğer ventilatör 
parametreleri 30 günlük mortaliteleri ile karşılaştırıldı.
Bulgular: Çalışmamıza toplam 116 çocuk dahil edildi. Otuz dört hasta pARDS grubunda 
sınıflandırılırken, 82 hasta PARDS dışı gruptaydı. Tüm hastaların mekanik ventilasyonun ilk günü 
parametreleri [∆P (p<0,001), PIP (p<0,001), Pplat (p<0,001), Pmean (p=0,008), Cstat (p<0,001), Cstat/
vücut ağırlığı (p<0,001), FiO2 (p=0,001)] hastane mortalitesi ile ilişkili bulunmuştur. Tek değişkenli 
analizde mortalite ile ilişkilendirilen sürüş basıncı ve diğer ventilatör parametreleri, lojistik regresyon 
analizi ile ayrıca değerlendirildi ve sürüş basıncı, mortalite ile en ilişkili ventilatör parametresi olarak 
belirlendi [olasılık oranı (OR)=1,51, %95 güven aralığı (GA) 1,24-1,82, p≤0,001]. pARDS ve pARDS 
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olmayan hastalarda ∆P ile mortalite arasındaki ilişkiyi bağımsız olarak değerlendirdik ve ∆P'nin hem PARDS hastalarında (OR=1,59, %95 GA 1,06-2,36, 
p<0,022) hem de non-PARDS hastalarda mortalite ile ilişkili olduğunu bulduk (OR=1,47, %95 GA 1,09-1,98, p<0,010). Tüm hasta grupları için 14,5 cm 
H2O’luk bir sürüş basıncı kesme değeri belirledik.
Sonuç: Sürüş basıncı, mekanik olarak ventile edilen hem pARDS hem de pARDS olmayan hastalarda artan mortalite riski ile anlamlı şekilde ilişkiliydi.
Anahtar Kelimeler: Sürüş basıncı, pediatrik yoğun bakım ünitesi, mortalite, pediatrik akut solunum sıkıntısı sendromu

Introduction 

Respiratory failure is one of the most common causes 
of hospitalization and mortality in patients in the pediatric 
intensive care unit (PICU). Although positive pressure 
mechanical ventilation is a life-saving treatment, it is 
associated with risks of morbidity and mortality. Although 
there is a consensus on mechanical ventilation in adult 
patients, this knowledge should be reflected in concrete data 
for the pediatric population (1-4). Mechanical ventilation with 
high tidal volumes may damage the lung through alveolar 
overdistension (volutrauma and barotrauma) and by causing 
the release of inflammatory cytokines (biotrauma) into the 
systemic circulation (5,6). Recently, it has been suggested 
to target driving pressure (∆P) in ARDS patients to achieve 
improved outcomes with optimal mechanical ventilation (7-
10). ∆P is calculated as the difference between the Plateau 
pressure (Pplat) and positive end-expiratory pressure (PEEP) 
and is derived by dividing tidal volume by respiratory system 
compliance (∆P=Pplat-PEEP). This measure estimates the 
mechanical strain (dynamic strain) caused by lung tidal 
volume. It is a non-invasive, straightforward method that 
can be easily performed at the bedside (10-12). Numerous 
studies have found an association between higher ∆P values 
and increased mortality in adults with ARDS. However, 
studies examining the relationship between driving pressure 
and mortality in patients with non-ARDS are limited, and the 
results have been contradictory (13-18).

This study investigates whether ∆P is associated with 
mortality in pediatric patients diagnosed with pARDS and 
non-pARDS who received mechanical ventilation support 
due to respiratory failure.

Materials and methods

This prospective, single-center observational study 
included patients admitted to the PICU. The study protocol 
was approved by the University of Health Sciences Turkey, Dr. 
Behçet Uz Child Diseases and Surgery Training and Research 
Hospital Clinical Research Ethics Committee (decision no: 

2020/07-02, date: 07.05.2020). Written informed consent 

was obtained from the parents/caregivers after the patient's 

initial clinical stabilization period. The study included patients 

aged between 1 month and 18 years who required invasive 

mechanical ventilation support due to respiratory failure in 

the PICU and were admitted between March 2018 and April 

2020. Patients were excluded if they received ventilation via 

a tracheostomy cannula or if they were extubated or died 

within the first 24 hours of ventilation.

Only patients who received at least 24 hours of 

mechanical ventilation were included in the analysis. Patients 

were divided into two groups based on the oxygenation index 

(OI), calculated using the formula: [mean airway pressure 

(MAP)xfraction of inspired oxygen (FiO2)]/partial pressure of 

oxygen in arterial blood (PaO2)x100, by the pediatric acute 

lung injury and sepsis consensus conference (PALICC) 

criteria for defining ARDS and non-ARDS. The PARDS 

definition was similarly based on the PALICC guidelines (3). 

On day 1, data were prospectively recorded, including patient 

demographics, ventilator settings (VT, VT/ideal body weight 

[IBW], respiratory rate, peak inspiratory pressure [PIP], Pplat, 

MAP [Pmean], minute volume, PEEP, static compliance [Cstat], 

FiO2, inspiratory time, and expiratory time). Additionally, 

the OI, Cstat (VT/∆P), PaO2/FiO2 ratio, driving pressure 

(∆P), PRISM III score, and pediatric sequential organ failure 

assessment (pSOFA) scores were calculated.

All patients were ventilated in pressure control mode 

throughout their hospitalization. Ventilator data were recorded 

twice within each 24 hours. Driving pressure was measured 

by obtaining Pplat every 12 hours using an inspiratory hold 

maneuver, with the mean Pplat value calculated from two 

measurements within 24 hours.

Total PEEP was measured using an expiratory hold 

maneuver, with the mean total PEEP value also calculated 

from two measurements within 24 hours; ∆P was then 

calculated using the formula Pplat PEEP. Neuromuscular 

blocking agents were administered to all patients before 

the measurements. Each patient was monitored for up to 

30 days or until hospital discharge. ∆P was compared with 
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other mechanical ventilator parameters between survivors 

and non-survivors at day 30, and ∆P and other parameters 

were also compared between the ARDS and non-ARDS 

groups based on 30-day mortality outcomes.

Statistical Analysis

Our primary objective was to assess the association 

between ∆P and mortality in patients with ARDS and 

non-ARDS. Second, we aimed to analyze the relationship 

between mortality and ∆P along with other mechanical 

ventilation parameters. Comparisons of driving pressure 

and other lung dynamics, depending on the data type and 

distribution, were conducted using the chi-square test, 

Wilcoxon’s independent t-test, or Mann-Whitney U test, 

with a p-value of <0.05 as statistically significant. The 

correlation coefficient was used to gauge the strength of 

the associations between variables. Pearson’s correlation 

was applied for parametric data and Spearman’s correlation 

for non-parametric data to identify covariances before logistic 

regression. Spearman’s correlation analysis was used to 

detect covariances.

Variables found to have significant associations with 

mortality in univariate analyses were further assessed 

by logistic regression [reporting odds ratio (OR) and 95% 

confidence intervals (CI)]. Model adequacy was evaluated 

with Hosmer-Lemeshow goodness-of-fit statistics. The 

multivariable analyses identified covariates potentially related 

to mortality. We ensured that VT/IBW, PaO2, OI, FiO2, PRISM 

III score, days of ventilation, and pSOFA score were not 

collinear with ∆P. Pplat, PIP, and Pmean were excluded from 

logistic regression models containing ∆P due to concerns 

regarding collinearity. Separate models were generated for 

Pplat, PIP, and Pmean due to their collinearity with the driving 

pressure.

The final model was used to identify the most relevant 

parameter associated with 30- day mortality in patients 

receiving mechanical ventilation for respiratory failure. ∆P 

cut-off values in our study were classified, and mortality 

predictions were calculated using receiver operating 

characteristic analysis (19,20). All statistical data were 

analyzed using IBM SPSS Statistics for Windows, version 

22 (Armonk, NY).

Results

Between March 2018 and April 2020, 263 patients 

received invasive mechanical ventilation support in our 

admitted to the PICU. However, 144 patients who did not 
meet the inclusion criteria were excluded from the study. 
A total of 116 children were included in the study. The 
median duration of mechanical ventilation was 7 days (IQR: 
9-14 days). Sepsis (31.8%) was the most common reason 
for the need for mechanical ventilation. Followed by lower 
respiratory tract infection (28.4%). Thirty four patients were 
included in the pARDS group and 82 in the non-pARDS group. 
Patients with pARDS or non-pARDS had no statistically 
significant pSOFA values (p-value: 0.063), however, patients 
with pARDS had higher PRISM III scores (p-value<0.001) 
than non-pARDS patients (p<0.010). Characteristics were 
reported in (Table 1). 

Among the included patients, 17 had mild, 9 had 
moderate, and 8 had severe pARDS. There were no 
differences in admission diagnosis and mortality on 30 days 
between the ARDS and non-ARDS groups. There were 93 
survivors and 23 non-survivors at 30 days. The comparison 
between survivors and non-survivors at day 30 is shown in 
(Table 2).

All patients’ mechanical ventilation parameters on the 
first day were [∆P (p<0.001), PIP (p<0.001), Pplat (p<0.001), 
Pmean (p=0.008), Cstat (p<0.001), Cstat/IBW (p<0.001), FiO2 
(p=0.001)] associated with hospital mortality. OI, PaO2, and 
days of ventilation were also associated with 30-day mortality 
in all patients (p<0.001, p=0.008, p=0.010, respectively). 
There was no significant association between VT/IBW 
(p=0.292), IT (p=0.986), ET (p=0.551), PEEP (p<0.221), RR 
(p=0.862), and 30- day mortality in all patients.  

The primary regression model aimed to determine the 
effect of ∆P on 30- day mortality in all patients and the 
mechanical ventilator parameter most associated with 
30- day mortality. Second, we aimed to determine the 
association of ∆P with 30- day mortality in patients with and 
without ARDS. As the collinearity between ∆P, PIP, Pplat, and 
Pmean was statistically significant, a logistic regression model 
was constructed for each of these variables (Table 3). ∆P 
was most associated with 30- day mortality (OR=1.51, 95% 
CI 1.24 to 1.82, p≤0.001). The Pmean was not associated with 
30- day mortality in any of the patients (OR=1.31, 95% CI 
0.98 to 1.73, p=0.062). We conducted separate analyses 
to determine the relationship between ∆P and mortality in 
patients with non-ARDS and ARDS, we found ∆P related to 
mortality in both patient groups (OR=1.59, 95% CI 1.06 to 
2.36, p<0.022) and non-ARDS patients (OR=1.47, 95% CI 
1.09 to 1.98, p<0.010) (Table 4). 
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Table 1. Demographic and clinical characteristics with pARDS and non-pARDS patients

Characteristic pARDS patients (n=34) non-pARDS patients (n=82) p-value

Age (months) 15.6 (9-35) 13.5 (7-24.4) 0.117

Female gender, n (%) 17.0 (50%) 34.0 (41.5%) 0.401

Days of ventilation 13.1 (8.6-17.0) 8.5 (6.3-12.1) 0.010

Admission diagnosis, n (%)

Sepsis 12 (32.4%) 25 (30.5%)

Pneumonia 10 (29.5%) 23 (28.1%)

Neurological diseases 9 (26.5%) 25 (30.5%)

Cardiological diseases 1 (2.9%) 3 (3.7%)

Hematologic diseases 1 (2.9%) 2 (2.4%)

Post-surgery 1 (2.9%) 2 (2.4%)

Immun deficiency 1 (2.9%) 2 (2.4%)

30-day mortality, (n) % 8 (23.5%) 15 (18.2%) <0.001

pARDS n (%)

Mild pARDS n (%) 17 (50.0%)

Moderate pARDS n (%) 9 (26.5%)

Severe pARDS n (%) 8 (23.5%)

Parametric data are presented as mean ± 1 standard deviation or non-parametric data presented as median (first and third quartiles), pARDS: Acute respiratory distress 
syndrome

Table 2. Mechanical ventilator parameters and clinical findings of all patients according to hospital mortality

Variable Survivors at day 30 (n=93) Non-survivors at day 30 (n=23)  p-value 

VT (ml) 71.9 (51.3-108.5) 82.0 (61.5-120.9) 0.180

VT/IBW (mL/kg) 7.0 (6.0-8.1) 6.5 (5.0-9.0) 0.292

VE (L/min) 2.8 (2.1-4.1) 2.3 (1.7-3.8) 0.117

RR (bpm) 34.0 (34.0-40.0) 35.0 (30-42) 0.862

PIP (cm H2O) 23.6 (19.5-26) 29.0 (25.0-34.0) <0.001

Pplat (cm H2O) 21.0 (19.0-25.0) 28.0 (24.0.-33.0) <0.001

PEEP (cm H2O) 7.0 (6.0-9.0) 7.0 (6.0-7.0) 0.221

ΔP (cm H2O) 16.0 (13.0-18.0) 23.0 (19.0-26.0) <0.001

Pmean (cm H2O) 11.7 (10.3-13.6) 13.1 (12.2-18.2) 0.008

Cstat (mL/cmH2O) 5.7 (3.5-8.1) 2.8 (2.0-5.7) <0.001

Cstat/İBW (mL/cm H2O/kg) 0.4 (0.3-0.6) 0.3 (0.2-0.4) <0.001

IT (s) 0.6 (0.5-0.7) 0.6 (0.5-0.9) 0.986

ET (s) 1.1 (0.9-1.3) 1.1 (0.8-1.2) 0.551

FiO2 ( %) 35.0 (30.0-44.0) 40.0 (40.0-60.0) 0.001

OI 3.3 (2.5-3.7) 4.8 (3.2-12.1) <0.001

PaCO2 (mmHg) 48.0 (±6.7) 50.3 (±7.6) 0.225

PaCO2, (mmHg) 122.3 (±26.4) 100.7 (±28.7) 0.008

Days of ventilation 10.5 (7.0-13.5) 8.0 (7.0-15.0) 0.010

PRISM III score 5.0 (2.3-8.8) 7.3 (2.0-10.0) <0.001

pSOFA score 5.0 (4.0-7.0) 6.0 (5.0-9.0) 0.063

Parametric data are presented as mean ± 1 standard deviation or non-parametric data presented as median (first and third quartiles),VT: tidal volume, VT/İBW: tidal volume/
ideal body weight, RR: Respiratory rate, PIP: Peak inspiratory pressure, Pplat: Plateau pressure, Pmean: Mean airway pressure, VE: minute volume, PEEP: Positive end-
expiratory pressure, Cstat :static compliance, FIO2: fraction of inspired oxygen, Is: İnspiratory time , ET: Expiratory time, OI:Oxygenation index, ΔP: driving pressure, Cstat: 
static compiance, PRISM III score: The pediatric index of mortality scores, MV: mechanical ventilator, PaO2: partial pressure of oxygen
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After evaluating the relationship between inspiratory 

airway pressures (∆P, PIP, Pmean, Pplat) and 30- day mortality 

by logistic regression analysis, we also compared these 4 

parameters with ROC analysis for ∆P area under the curve 

was 0.838 (95% CI, 0.738-0.939, p<0.001), Pplat 0.770 (95% 

CI, 0,662-0,878, p<0.001), PIP 0.762 (95% CI, 0.648-0.876, 

p<0.001) and Pmean 0.678 (95% CI, 0.558–0.798, p=0.008). 

When assessing the risk of death at each level of ∆P. We 

defined the cut-off value related to mortality in our study as 

17 cm H2O in patients with pARDS, 13 cm H2O in patients 

without ARDS, and 14,5 cm H2O in all patients. We found 

the overall mortality rate to be 10.2 times higher for patients 

with ∆P greater than 14.5 cm H2O compared with patients 

whose ∆P was 14.5 cm H2O (OR=10.2, 95% CI 1.37 to 70, 

75, p<0.001).

Discussion

Mechanical ventilation remains one of the primary reasons 

for admission to admitted to the PICUs, with approximately 

64% of admitted children requiring this intervention (21,22). 

Driving pressure (∆P), calculated as the difference between 

end-inspiratory Pplat and applied PEEP, represents the ratio 

of tidal volume (VT) to respiratory system compliance. P 

has shown potential in reducing mortality among children 

receiving mechanical ventilation for respiratory failure. ∆P 

offers a simple, noninvasive approach and can be measured 

directly at the bedside.

In recent years, data from studies on adult ARDS have 

indicated that ∆P is strongly associated with mortality 

(10,23). Our study demonstrated that ∆P on day 1 was 

correlated with hospital mortality in patients with pARDS. 

Although the PALICC guidelines have not yet recommended 

targeting ∆P in patients with pARDS, the connection 

between ∆P and mortality in patients with ARDS is well 

established. However, this association remains unclear in 

patients without ARDS. A meta-analysis by Serpa Neto et 

al. (15) revealed increased postoperative lung complications 

with elevated ∆P during general anesthesia (24). In two 

previous studies, no significant relationship was observed 

between ∆P and mortality in non-ARDS patients (14,18). 

Our findings similarly indicate that ∆P on day 1 was related 

to 30-day mortality among non-pARDS patients receiving 

mechanical ventilation for respiratory failure. Mechanical 

ventilation was applied without targeting low tidal volume or 

specific ∆P values, suggesting that higher ∆P may increase 

the mortality risk in patients without ARDS due to elevated 
inspiratory pressures. Numerous recent studies highlight the 
significance of driving pressure on survival outcomes (25-29), 
and many ARDS studies have found associations between 
VT and mortality in pediatric patients (8,25,26). However, in 
our study, we observed no significant association between 
VT and mortality in pARDS and non-pARDS patients. This 
might explain the observed mortality association with ∆P 
and compliance in patients with pARDS.

Current adult ARDS data suggest that driving pressure 
is more closely associated with mortality than inspiratory 
pressure (10,23). Some pediatric studies have also identified 
linear correlations between mortality and PIP and Pplat 
(8,25). Higher inspiratory pressures (PIP, Pplat, Pmean, ∆P) 
were associated with 30- day mortality.

Using four distinct multivariate regression models, we 
found that ∆P had the strongest association with mortality. 
Each 1-SD increase in ∆P (approximately 7 cm H2O) increased 
the mortality risk by 51% (10). ∆P cut-off values varied from 
13 to 21 cm H2O (10,27,28), and in our study, cut-offs were 
defined as 17 cm H2O for patients with ARDS, 13 cm H2O 
for patients without ARDS, and 14.5 cm H2O for all patients 
collectively.

This study has notable strengths. This is among the 
few prospective studies exploring the link between ∆P and 
mortality in both pARDS and non-pARDS patients, with 
∆P and other ventilatory parameters measured using hold 
maneuvers to minimize patient effort and provide detailed 
data.

However, there are limitations. First, only the initial 24- 
h ventilator settings were analyzed; subsequent ventilator 
pressure changes due to dynamic lung responses were not 
captured. Additionally, as a single-center study, the findings 
may be limited in generalizability.

Conclusion

In this single-center prospective observational study, 
driving pressure was significantly associated with an 
increased mortality risk in patients with pARDS and 
non-pARDS undergoing mechanical ventilation. Future 
randomized multicenter studies are needed to establish 
protocols targeting ∆P and determine optimal cut-off values.
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